Weiss et al, 2018, https://doi.org/10.1016/j.cub.2017.12.022

ENV-200 Chemistry of natural waters II: Effect of CO₂ increase on lakes

Tamar Kohn tamar.kohn@epfl.ch

Processes affecting CO₂ budget of a lake

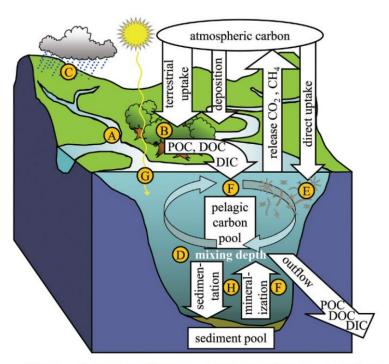


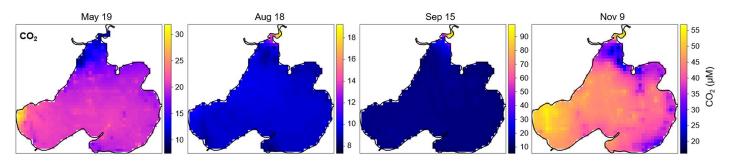
Fig. 2. Schematic diagram showing pathways of carbon cycling mediated by lakes and other continental waters. The letters correspond to rows in Table 1.

Source: Tranvik et al., Limnol. Oceanogr., 2009

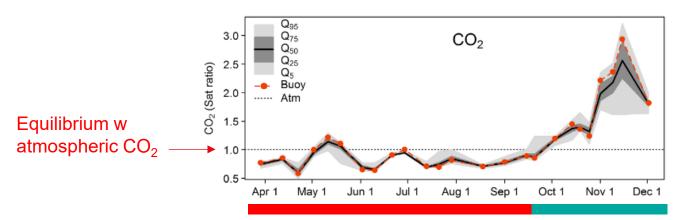
CO₂ sources:

- Atmospheric input
- Respiration: (CH₂O)_n + O₂ → CO₂ + H₂O
- Abiotic oxidation of (imported) organic matter, e.g., MnO₂ + (CH₂O)n + H⁺ → CO₂ + H₂O + Mn²+
- Input from groundwater or rivers

CO₂ sinks:


- Evaporation into atmosphere
- Photosynthesis: CO₂ + H₂O → (CH₂O)_n + O₂
- Mineral weathering, e.g.: CaCO₃ + CO₂ + H₂O → Ca²⁺ + HCO₃⁻
- Export to downstream ecosystsems

Human influences affect CO₂ budget in various ways:


- Nutrient input by agriculture or wastewater → eutrophication → increased algal growth / decomposition
- Climate change → higher temperature → lower CO₂ solubility in water column, enhanced microbial activity and respiration rates.
- Land use changes → deforestation and urban development alter the inflow of organic matter and nutrients

Lake CO₂ levels and saturation vary by season

Source: Loken et al, 2019: https://doi.org/10.1029/2019JG005186

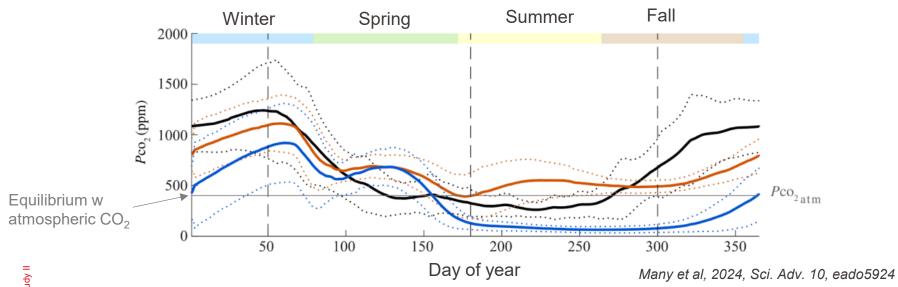
photosynthesis > respiration (lake is undersaturated, a CO₂ sink)

respiration > photosynthesis (lake is oversaturated, a CO₂ source)

Lake Geneva is a net CO₂ emitter (ca. 12 Gg C per year). Why?

Only little input of organic matter from the shore, so respiration of imported organic material is not a relevant CO₂ source.

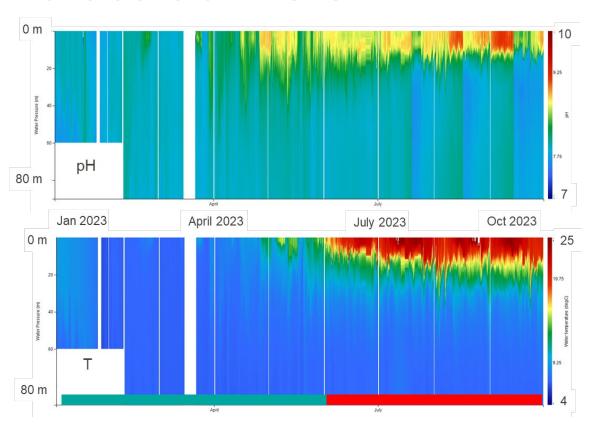
Alternative, newly discovered, chemical explanation:


- Input of calcium and carbonate by erosion of the rock on the upper shore of the lake (dissolution of CaCO₃ by rain water).
- In summer, the combination of photosynthesis (pH increase) and heat promote supersaturation of Ca²⁺
- Calcite microparticles precipitate, releasing CO₂: Ca²⁺ + 2 HCO₃⁻ ↔ CaCO₃ + CO₂ + H₂O
- The release of CO₂ compensates a large fraction of the CO₂ incorporated by phtosynthetic algae, minimizing CO₂ undersaturation during summer

For more info, see Many et al, 2024, Sci. Adv. 10, eado5924

ENV 200: Case study II

pCO₂ in Lake Geneva


Data are averaged from 0 to 10m depth

Black line: measured pCO₂

Red line: modelled pCO₂ considering calcite precipitation Blue line: modelled pCO₂ without calcite precipitation

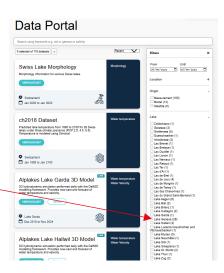
ENV 200: Case study II

Data source: https://www.datalakes-eawag.ch/

LéXPLORE experimental platform near Pully Source: swissinfo.ch

Cold water, respiration > photosynthesis → large CO₂ oversaturation, CO₂ emission

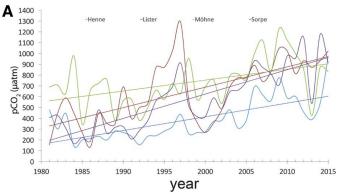
Warm water, CO_2 consumption by photosynthesis \rightarrow pH increase, calcite precipitation \rightarrow CO_2 release \rightarrow only slight CO_2 undersaturation

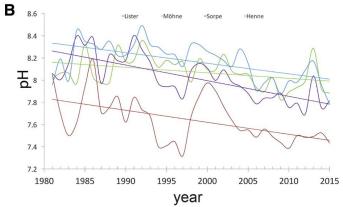

Exercise

Find the T profile for Lake Geneva in 2024 on www.datalakes-eawag.ch

- 1 Open datalakes → data portal
- 2 Under "Lake" select Lake Geneva —
- 3 Find "Lexplore Idronaut depth time grid" and click on "view dataset"
- 4 Select "water pressure" on the y-axis (reflects depth)
- 5 Select "water temperature" on the z axis
- 6 Under "Time Range", select the year 2024
- 7 Under "Display options" you can re-scale the axes

Discuss with your neighbor:


- how does the temperature profile of 2024 compare to that of 2023?
- Do you think the lake emitted more or less CO₂ in 2024 than in 2023?
- When atmospheric pCO₂ increases, will lakes still acidify, even though they are often emitters of CO₂ rather than sinks?

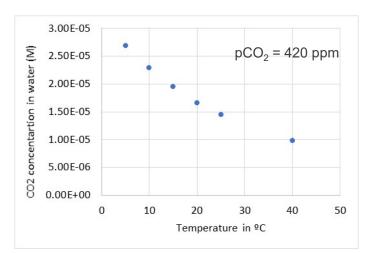


Observation: pH and CO₂ in 4 German lakes over 35 years

Average increase of pCO₂ by 561.21 µatm during the 35 year monitoring period. (Note: this is the dissolved CO₂ concentration, in an unusual unit).

Average decrease in pH from 8.13 to 7.82 over the 35 year monitoring period

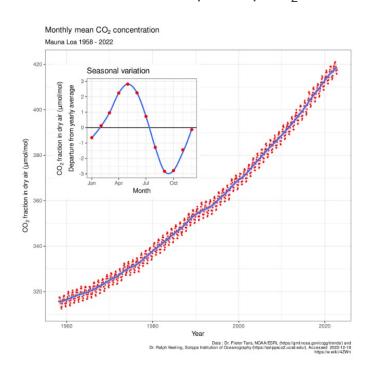
Source: Weiss et al, 2018, https://doi.org/10.1016/j.cub.2017.12.022

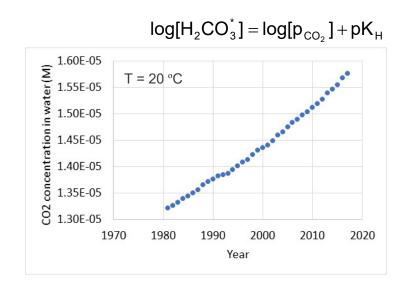

Possible causes for decrease in pH and increase in dissolved CO2

1. Increase in water temperature?

Recall: $p_{CO_2}/[H_2CO_3^*(aq)] = K_H$ (atm/M)

 $\log[H_2CO_3^*] = \log[p_{CO_2}] + pK_H$

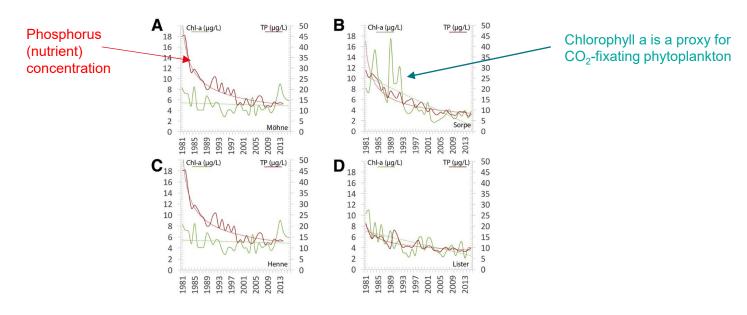

	pK _H					
	5 °C	10 °C	15 °C	20 °C	25 °C	40 °C
$CO_2(g) + H_2O \leftrightarrow H_2CO_3^*$	-1.20	-1.27	-1.34	-1.41	-1.47	-1.64



No! Increasing water temperature leads to less dissolved CO₂

Possible causes for decrease in pH and increase in dissolved CO2

2. Increase in atmospheric pCO₂ due to fossil fuel burning?

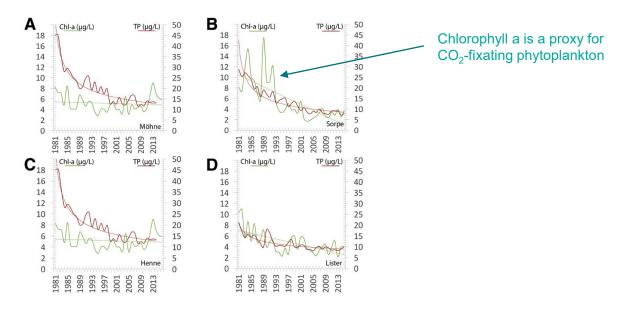

Correct trend in dissolved CO₂

ENV 200: Case study II

Source: Wikipedia

Possible causes for decrease in pH and increase in dissolved CO2

3. Decrease in nutrient input leading to less CO₂ fixation?



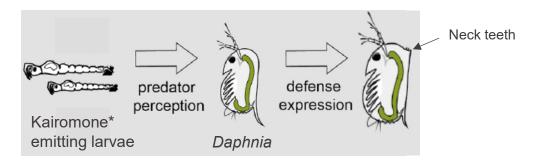
Source: Weiss et al, 2018, https://doi.org/10.1016/j.cub.2017.12.022

Possible causes for decrease in pH and increase in dissolved CO2

4. Decrease in the abundance of CO₂-fixating phytoplankton?

Source: Weiss et al, 2018, https://doi.org/10.1016/j.cub.2017.12.022

ENV 200: Case study II


No! Chl-a only decreases in two lakes (and only over first 20 years), but CO₂ increases in all four lakes and for entire monitoring period.

Ecological effects on *Daphnia*

Daphnia is a water flea that is often used as a model organism in ecotoxicological studies. They serve as prey for fish and invertebrates. They are ca. 1 mm in size and present in many water bodies and are highly sensitive to xenobiotics.

Daphia has different defense mechanisms. When predators (e.g., kairomone-emitting larvae) excrete chemical signals (kairomones), they are sensed by Daphnia and elicit a defense response (development of neck teeth and increase in body size).

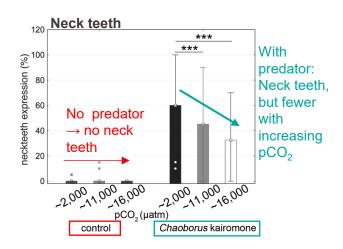
Adapted from: Weiss et al, 2018, https://doi.org/10.1016/j.cub.2017.12.022

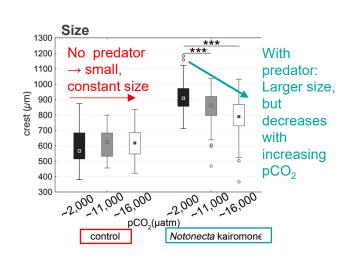
*Kairomones = signaling o

*Kairomones = signaling chemicals that transfer information between organisms

Ecological effects on *Daphnia*

Test 1: effect of pCO₂ on neck teeth and body size, with and without a predator.

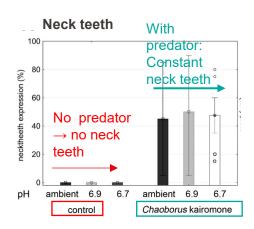

Approach: increase pCO₂, measure if and how neck teeth and size (crest) change.

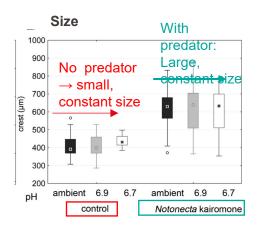

pCO₂/pH conditions tested:

2000 µamt CO₂/pH 7.5

11'000 µatm CO₂/pH 6.9

16'000 µatm CO₂/pH 6.7




Conclusion1 : CO₂ affects the ability of Daphnia to sense a preditor. The higher the pCO₂, the weaker the defense mechanism when a predator is present.

Ecological effects on *Daphnia*

Test 2: is it the change in pCO_2 or the associated change in pH that reduces defense? Approach: vary pH, but not pCO_2 (by adding hydrochloric acid)

- ~ 2000 µamt CO₂/pH 7.5
- ~ 2000 µamt CO₂/pH 6.9
- ~ 2000 µamt CO₂/pH 6.7

Conclusion 2: The defense mechanism is not affected by pH.

The reduction in defense mechanism must be due to the increase in pCO₂ itself.

Summary

- Lakes have a complex CO₂ budget, which is affected by increasing CO₂ levels, but also other mechanisms (both natural and human-made)
- Even tough lakes are often supersaturated in CO₂, they are acidifying as a result of increasing CO₂ levels.
- The lake pH is dropping, so far by about 0.3 units over 35 years (though large differences in lakes can be expected!)
- The increase in CO₂ has ecological effects, which are not necessarily related to pH, but also to CO₂ itself.
- The effects of climate change on lake biogeochemistry and ecology are highly complex and are not well understood. This is an interesting and highly interdisciplinary field of study for future environmental scientists and engineers.